р

Вы вошли как Гость | Группа "Гости"Приветствую Вас Гость | RSS

...

Внимание!

Если Вам понравился
наш сайт, то вы можете добавить его в закладку вашего браузера.



Меню сайта

Форма входа

Поиск

Календарь
«  Октябрь 2017  »
ПнВтСрЧтПтСбВс
      1
2345678
9101112131415
16171819202122
23242526272829
3031

Статистика

СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ И ТОКА

Любое радиоэлектронное устройство содержит стабилизированный источник питания, от которого зависят характеристики аппаратуры. Стабилизаторы выполняют на различные напряжения — от сотен милливольт до сотен вольт. Большой диапазон перекрывают стабилизаторы и по току. Требования, предъявляемые к стабилизаторам, зависят от условий работы аппаратуры. Если стабилизатор используется в качестве эталона напряжения, то он должен быть стабильным прежде всего в заданном диапазоне температур. При этом он, как правило, работает при малых выходных токах. Стабилизаторы, рассчитанные на большие выходные токи, должны поддерживать выходные напряжения в заданных пределах. Эти пределы могут быть достаточно большими.
Различают три основные группы стабилизаторов: параметрические, компенсационные и ключевые. В параметрических стабилизаторах используется элемент иди схема с резко нелинейной зависимостью напряжения от тока, например стабилитрон. Схема включения стабилитрона выбирается такой, чтобы при колебаниях входного напряжения, выходное напряжение практически не менялось. В этих случаях стабилитрон следует питать через генератор тока — стабилизатор тока. Параметрические стабилизаторы не позволяют регулировать выходное напряжение и не обеспечивают больших токов нагрузки. Они обычно используются в качестве источника опорного напряжения в более мощных компенсационных стабилизаторах В компенсационных стабилизаторах осуществляется сравнение выходного напряжения с опорным. В зависимости от разности напряжений (и ее знака) автоматически включается балансирующий (регулирующий) элемент, который отрабатывает эту разность. Для точного отслеживания выходного напряжения разность подается на усилитель постоянного тока, который управляет регулирующим элементом. По способу включения регулирующего элемента стабилизаторы делятся на последовательные и параллельные. В последовательном стабилизаторе регулирующий элемент включается последовательно с нагрузкой, а в параллельном — параллельно нагрузке. Последовательные стабилизаторы делают на большие токи, а параллельные нашли применение в схемах с большим выходным напряжением.
Основным параметром стабилизаторов является коэффициент стабилизации. Этот параметр зависят от коэффициента усиления усилителя постоянного тока. Применение интегральных ОУ позволяет значительно повысить коэффициент стабилизации, снизить температурный дрейф выходного напряжения, доведя его до значения, определяемого нестабильностью выходного делителя и опорного стабилитрона. Интегральные микросхемы позволили также значительно сократить габариты стабилизаторов. В некоторых случаях достаточно включить на выходе мощный транзистор, чтобы построить стабилизатор напряжения с удовлетворительными параметрами. Применение стабилизаторов на интегральных микросхемах позволяет создать источники питания для небольших узлов и приборов. В этом случае значительно уменьшается паразитная связь между узлами прибора и снижаются требования к первичному выпрямителю.
Важным свойством стабилизаторов напряжения является способность переходить в режим самозащиты при перегрузках и коротких замыканиях на выходе. Почти все схемы защиты управляются включенным в цепь нагрузки резистором с малым сопротивлением. Ток нагрузки создает падение напряжения на этом сопротивлении, которое включает защитную схему. Схема защиты может работать в двух режимах - с автоматическим включением выходного напряжения стабилизатора после устранения короткого замыкания и с блокировкой, когда для восстановления выходного напряжения требуются внешние сигналы.
Смотрите так же:

1. ФОРМИРОВАТЕЛИ ОПОРНОГО НАПРЯЖЕНИЯ
2. МАЛОМОЩНЫЕ ТРАНЗИСТОРНЫЕ СТАБИЛИЗАТОРЫ
3. МОЩНЫЕ СТАБИЛИЗАТОРЫ


Copyright MyCorp © 2017
Сделать бесплатный сайт с uCoz